China best Metric Hobbing Carbon Alloy Steel Herringbone CNC Machining Metal Transmission OEM Grinded Miter Helical Gear with Hot selling

Product Description

Metric Hobbing Carbon Alloy Steel Precision Gearbox Reducer Herringbone CNC Machining Auto Spare Parts Metal Transmission Drive OEM Grinded Miter Helical Gear

Features

1. High precision gear for smooth, quiet operation.
2. Flexible for custom-made requests.
3. Stable transmission, low impact, vibration and noise.
4. Heavy Load capability, more compact, but less complex.

Product Description

 

Products   Spur Gear, Helical Gear, Herringbone Gear, Spiral Bevel Gear, Straight Bevel Gear, Worm Gear, Shaft, Pinion
Module   M0.3-M10
Precision grade   DIN6, DIN7, DIN8, DIN10
Pressure angle   14.5 degree, 15 degree, 20 degree
Material   Medium Carbon Steel: 35#, 45#
Carburizing Steel: 20CrMnTi, 20CrMnMo, 20CrMo
Alloy Steel: 40Cr, 35CrMo, 42CrMo, 40CrNiMo
Cast Iron: HT250, QT400
Copper, Stainless Steel, Brass, Nylon, POM, and so on
Heat treatment   Hardening & Tempering, Surface Quenching,
Integral Quenching, Carburizing Quenching, Tempering,
Normalizing, Nitriding
Surface treatment   Blacking, Polishing, Anodization, Chrome Plating, Zinc Plating, Nickel Plating
Application   Gearbox and reducer;
Precision cutting machines, Lathes machines;
Milling machines;
Grinder machine;
Automated mechanical systems;
Automated warehousing systems.
Gear hobbing machines, gear shapers, gear shaving machines, gear milling, gear grinding
machines and many kinds of gear-related machines.
Machining process   Forging, Machining, Hobbing, Milling, Shaving, Grinding, Heat treatment…

Detailed Photos

 

 

Our Advantages

Related Product

 

Company Profile

FAQ

Q: How to ship the planetary gear to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Helical Gearbox
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

helical gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

herringbone gear

How do herringbone gears contribute to smooth power transmission?

Herringbone gears contribute to smooth power transmission through their unique design and characteristics. Here’s a detailed explanation of how herringbone gears achieve smooth power transmission:

  • Opposing Helix Angles: Herringbone gears have a double helical tooth profile with opposing helix angles on each side. The helix angles are inclined in opposite directions to each other. This design feature helps to cancel out axial and radial forces that would occur in single helical gears. The opposing helix angles create a self-centering effect that promotes proper tooth engagement and load distribution, reducing gear vibrations and ensuring smooth power transmission.
  • Reduced Vibration and Noise: The opposing helix angles of the herringbone gear teeth minimize gear vibrations during operation. When the teeth of one side of the gear mesh with the teeth of the other side, the opposing helix angles create a balanced force distribution that counteracts any tendency for the gear to move laterally. This results in reduced vibration and noise levels, making herringbone gears ideal for applications where quiet operation is desired, such as precision machinery and automotive transmissions.
  • Large Contact Area: Herringbone gears have a larger contact area compared to spur gears. The double helical tooth profile allows for overlapping engagement of the gear teeth, resulting in a larger contact ratio. This increased contact area distributes the transmitted torque over more teeth, reducing the stress on individual teeth and promoting smoother power transmission. The larger contact area also helps to minimize wear and improve the overall durability of the gear system.
  • Enhanced Load Distribution: The double helical tooth design of herringbone gears provides improved load distribution along the tooth surfaces. The opposing helix angles help to evenly distribute the transmitted load between the two sides of the gear. This balanced load distribution minimizes localized stress concentrations and reduces the risk of tooth failure. It ensures that the torque is transmitted smoothly across the entire tooth profile, resulting in efficient power transmission and reduced wear.
  • Efficient Torque Transfer: Herringbone gears offer efficient torque transfer due to their large contact area and overlapping tooth engagement. The double helical tooth profile provides a larger contact ratio compared to spur gears, allowing for a greater number of teeth in contact at any given time. This increased contact ratio distributes the torque more evenly, reducing the risk of tooth shear and improving power transmission efficiency. The efficient torque transfer contributes to smooth and reliable operation of the gear system.

These factors combined – opposing helix angles, reduced vibration and noise, large contact area, enhanced load distribution, and efficient torque transfer – contribute to the smooth power transmission capabilities of herringbone gears. Their design minimizes the effects of axial and radial forces, promotes balanced load distribution, and ensures reliable and efficient power transfer in various applications.

herringbone gear

What lubrication is required for herringbone gears?

Proper lubrication is essential for the smooth and efficient operation of herringbone gears. The lubricant used in herringbone gear systems plays a crucial role in reducing friction, minimizing wear, dissipating heat, and protecting the gear surfaces. Here’s a detailed explanation of the lubrication requirements for herringbone gears:

  • Lubricant Selection: When selecting a lubricant for herringbone gears, it is important to consider factors such as load, speed, operating temperature, and environmental conditions. The lubricant should have suitable viscosity and additives to provide adequate film thickness and maintain lubrication under the anticipated operating conditions. Commonly used lubricants for herringbone gears include mineral oils, synthetic oils, and specialty lubricants formulated for gear applications.
  • Viscosity: The viscosity of the lubricant is crucial for ensuring proper lubrication and film formation between the gear teeth. The lubricant should have sufficient viscosity to create an effective lubricating film that separates the gear surfaces and reduces friction. It should be able to maintain this film under the operating conditions, ensuring smooth gear engagement and minimizing wear. The appropriate viscosity grade is typically specified by the gear system manufacturer based on the gear design, load, and speed.
  • Lubricant Application: The lubricant should be applied to the gear system in the appropriate manner to ensure uniform coverage and distribution. In most cases, herringbone gears are lubricated by immersion or splash lubrication, where the gears partially or fully submerge in the lubricant or have the lubricant splashed onto their surfaces. The lubricant should be directed towards the gear meshing area to ensure proper lubrication of the gear teeth and contact surfaces.
  • Lubricant Maintenance: Regular lubricant maintenance is essential to ensure the continued performance and longevity of herringbone gears. This includes monitoring the lubricant condition, checking for contamination, and replenishing or replacing the lubricant as necessary. Over time, the lubricant may degrade, become contaminated with particles or moisture, or lose its effectiveness. Regular inspections and lubricant analysis can help identify any issues and determine the appropriate maintenance intervals for lubricant replacement or replenishment.
  • Sealing and Contamination Prevention: Proper sealing of the gear housing or enclosure is important to prevent the ingress of contaminants, such as dust, dirt, or moisture, into the gear system. Contaminants can degrade the lubricant and lead to increased wear and damage to the gear surfaces. Seals, gaskets, or other appropriate sealing mechanisms should be employed to minimize the risk of contamination and maintain the integrity of the lubricant.

It is important to consult the gear system manufacturer’s recommendations and specifications regarding lubrication requirements. The manufacturer may provide specific guidelines regarding lubricant type, viscosity, application methods, and maintenance procedures based on the gear design and intended operating conditions. Adhering to these guidelines will help ensure optimal lubrication and maximize the performance and service life of herringbone gears.

herringbone gear

What industries commonly use herringbone gears?

Herringbone gears, also known as double helical gears, are utilized in various industries due to their unique design and advantageous characteristics. Here’s a detailed explanation of the industries that commonly use herringbone gears:

  • Power Generation and Transmission: Herringbone gears find extensive use in power generation and transmission systems. They are employed in gearboxes, drivetrains, and speed reducers that are essential components in power plants, including thermal power plants, hydroelectric power plants, and wind farms. Herringbone gears provide efficient torque transfer and smooth operation, making them suitable for power generation applications.
  • Heavy Machinery and Equipment: Herringbone gears are widely employed in heavy machinery and equipment across different industries. Applications include construction machinery, mining equipment, industrial machinery, and material handling systems. These gears can handle high loads and provide reliable torque transmission, making them suitable for heavy-duty operations.
  • Oil and Gas Industry: The oil and gas industry extensively utilizes herringbone gears in various equipment. They are found in pumps, compressors, turbines, and other machinery used in oil refineries, petrochemical plants, and offshore platforms. Herringbone gears are capable of handling high torque requirements and provide reliable performance in demanding and critical environments.
  • Marine and Shipbuilding: Herringbone gears are widely used in marine propulsion systems, including ship propulsion drives and propeller shaft arrangements. They are also found in other marine equipment, such as winches, cranes, and offshore drilling rigs. Herringbone gears facilitate efficient power transfer and contribute to the smooth and reliable operation of marine vessels.
  • Aerospace and Aviation: Herringbone gears are employed in aerospace and aviation applications where high-speed and high-torque transmission is required. They are used in aircraft engines, landing gear systems, and helicopter transmissions. Herringbone gears contribute to the efficient and reliable performance of aerospace and aviation systems.
  • Automotive and Transportation: Herringbone gears are utilized in various automotive applications that require high torque and smooth power transmission. They are found in automotive transmissions, differential gears, and drivetrain systems. Herringbone gears enable efficient power transfer and contribute to the overall performance and reliability of vehicles.
  • Printing and Packaging: Herringbone gears are commonly used in printing presses and packaging machinery. They are employed in the transmission systems that drive the rollers, cylinders, and cutting mechanisms, ensuring precise and synchronized operation. Herringbone gears’ noise-canceling properties and smooth engagement make them desirable in printing and packaging applications that require high precision and quality.
  • Steel and Metalworking: Herringbone gears are utilized in steel mills and metalworking machinery. They are found in rolling mills, extruders, forge presses, and other equipment involved in metal processing and shaping. Herringbone gears withstand the high loads, vibrations, and harsh operating conditions commonly encountered in steel and metalworking industries.
  • Railway and Transportation Systems: Herringbone gears are employed in railway systems, particularly in locomotives and rolling stock. They are used in propulsion systems, gearboxes, and drivetrains, ensuring efficient power transmission and reliable train operation. Herringbone gears contribute to the smooth and safe movement of trains.

These are just a few examples of the industries that commonly use herringbone gears. Their unique tooth design, load-carrying capacity, bidirectional power transmission capability, and smooth operation make them suitable for a wide range of industrial applications that require efficient and reliable torque transmission.

China best Metric Hobbing Carbon Alloy Steel Herringbone CNC Machining Metal Transmission OEM Grinded Miter Helical Gear with Hot sellingChina best Metric Hobbing Carbon Alloy Steel Herringbone CNC Machining Metal Transmission OEM Grinded Miter Helical Gear with Hot selling
editor by CX 2024-03-26